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Abstract. We generalize the formalism of the factorization method by introducing spin degrees
of freedom, in addition to local potential terms. We compare this construction with conventional
factorization techniques of non-relativistic Hamiltonians and the formalism of supersymmetric
quantum mechanics. The characteristic isospectrality of the HamiltoniansH1 = QR andH2 = RQ
is maintained in our more general framework. As illustrative examples we consider two exactly
solvable models (related to the harmonic oscillator and the Coulomb problems) and some quasi-
exactly solvable problems. In all three cases the zero-energy ground state ofH1 is found to be
infinitely degenerate. Further possible generalizations of our approach are also outlined.

1. Introduction

Quantum mechanical problems can be formulated using a wide variety of mathematical tools,
such as differential operators, matrices, abstract quantities, etc. The energy spectra of quantum
mechanical Hamiltonians constructed this way often exhibit similarities with those of other
systems and this fact has been attributed to specific relations between the Hamiltonians. The
isospectrality of Hamiltonians has been interpreted in terms of factorization techniques [1],
intertwining relations [2, 3], or algebraic constructions [4] also including supersymmetry
schemes [5]. These approaches are generally not independent: it has been shown that
the relatively new field of supersymmetric quantum mechanics (SUSYQM) is basically a
reformulation of the factorization method [6] and its relation to some algebraic approaches has
also been discussed [7].

Isospectrality of Hamiltonians can be generated by surprisingly simple constructions
that do not even refer to the explicit realization of the operators involved. The intertwining
relation [2,3] between HamiltoniansH1 andH2

H1Q = QH2 (1)

guarantees, for example, that if there exists an eigenstate,ψ2, ofH2 with eigenvalueE(2), then
Qψ2 will be an eigenstate ofH1 with the same eigenvalue. (Note that ifQ has an inverse,
then the above relation can be interpreted as a similarity transformation betweenH1 andH2.)
However, based only on (1) nothing more can be said about the energy spectra in general.
A particular realization of (1) can be obtained by assuming that the two Hamiltonians are
factorized as

H1 = QR H2 = RQ. (2)
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Then assuming that the eigenfunctions ofHi areψi with eigenvaluesE(i), wherei = 1, 2 the
relations

H2(Rψ1) = RQRψ1 = R(H1ψ1) = E(1)Rψ1 (3)

H1(Qψ2) = QRQψ2 = Q(H2ψ2) = E(2)Qψ2 (4)

follow. With the additional requirementQ = R† the Hermiticity of the Hamiltonians and the
non-negativity of their eigenvalues can also be guaranteed. Furthermore, ifψ1 is a normalizable
eigenfunction ofH1 with eigenvalueE(1), the eigenfunction ofH2 belonging to the same
eigenvalue can be given as

ψ2 = (E(1))− 1
2 (Rψ1). (5)

A special situation occurs whenE(1) = 0, in which caseψ2 cannot be defined by (5), so the
corresponding energy level atE = 0 is missing. Of course, the reverse situation (in which the
role ofH1 andH2 is interchanged) can also be formulated by (4).

It is remarkable that these rather general results of the factorization method [1] hold in
their abstract form, without specifying the realization of the operators. In most cases the
Schr̈odinger equation is factorized in one dimension, i.e. on thex = (−∞,∞) or the [0,∞)
intervals (in case of radial equations) or on a finite interval. Then theQ andR operators are
naturally chosen as linear differential operators of the type± d

dx +W(x). (Note that multiplying
Q with a constant phase factor exp(iφ) andR with exp(−iφ) does not affect the construction
outlined above.) Combining operators of the typeQ andR with matrices gives rise to various
SUSYQM constructions [5]. TheN supercharges and the supersymmetric Hamiltonian satisfy
commutation and anticommutation relations and form a superalgebra. The particular symmetry
scheme obtained this way, i.e. supersymmetry can then be accounted for the degeneracies
occurring in the spectra. The most frequently used model isN = 2 SUSYQM, in which
the two supercharges and the supersymmetric Hamiltonian are represented in terms of 2× 2
matrices [5,8].

The construction leading to isospectral Hamiltonians can be generalized in several ways.
The factorization energy, for example, can be chosen to be different from zero:H1 = QR + ε
[9], or differential operators of higher order can be considered in the realization of theQ- andR-
type operators [3,10]. Here we focus on the factorization of the three-dimensional Schrödinger
equation, rather than on that of the one-dimensional one. We construct the operatorsQ andR
in a rather general form and systematically explore the possibilities by specifying their form
according to various requirements (hermiticity, symmetries and invariances with respect to
various operations). This construction turns out to be especially suited to describing quantum
mechanical potential problems also depending on spin degrees of freedom.

In section 2 we discuss the factorization of the Schrödinger equation in terms of a pair
of matrix valued linear differential operators and specify the formulae for central potentials.
In section 3 three examples are presented and the characteristic degeneracies of the spectra
are discussed. The results are summarized in section 4, where our approach is also placed
in a wider context. A brief discussion of some specific non-central problems is given in the
appendix.

2. The basic formalism

Consider the factorization of the Hamiltonians (2) in terms of the operatorsQ andR defined
as

Q = σ · (p + a(r)) +C(r) R = σ · (p + b(r)) +D(r) (6)
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with unitsh̄ = 2m = 1. Now assume thatC andD are functions ofr = |r|, anda andb have
the form

a(r) = f (r)r b(r) = g(r)r. (7)

This choice naturally leads to potential problems with spherical symmetry. Substituting (7)
into (6) one finds that

H1 = p2 + (g + f )r · p + i(f − g)σ · L− ig′r − 3ig + gf r2 +CD

+(C +D)σ · p +

(
fD + gC − i

1

r
D′
)
σ · r. (8)

Note that the last two terms ofH1 in (8) have pseudoscalar character. Also note the appearance
of terms usually considered are of relativistic origin. The corresponding formula forH2 readily
follows from (8) by thef ↔ g andC ↔ D replacements.

Table 1 summarizes the conditions under which some of the terms vanish, and also lists the
consequences of certain prescribed properties ofQ andR. These latter ones include conditions
which guarantee the Hermiticity ofH1 andH2. (Besides the standardR† = Q choice we also
list the more specialR† = Q = R case, which recovers the Pauli Hamiltonian that can be
formulated in terms ofN = 1 SUSYQM [11] using a single self-adjoint supercharge operator.)
Table 1 also lists the condition for time-reversal invariance requiring that the terms including
σ ·p andσ ·r transform in the same way under time reversal. Conditions for the more general
case of non-central potentials could also be formulated. A particular case of such problems is
discussed briefly in the appendix.

In what follows we focus on problems where the resulting Hamiltonians are Hermitian,
have spherical symmetry, and are free from pseudoscalar and explicitly linear derivative terms.
(We note that non-Hermitian Hamiltonians are also considered in various areas [12], such as
nuclear systems admitting optical (complex) potentials [13].) Simple calculations show that
the above conditions are met ifC(r) = D(r) = 0 andg(r) = −f (r) = f ∗(r) hold. (This
latter condition restricts thef (r) function to purely imaginary values.) The Hamiltonians
obtained this way depend on the unspecified functionf (r) and describe two non-relativistic
problems with spin–orbit interaction:

H1 = p2 + 2if σ · L + if ′r + 3if − f 2r2 (9)

H2 = p2 − 2if σ · L− if ′r − 3if − f 2r2. (10)

It is natural to express the wavefunctions in terms of orbital and spin states as

|nljm〉 =
∑
Ms

〈lM 1
2s|jm〉|nlM〉| 12s〉 (11)

Table 1. Conditions guaranteeing certain properties of operatorsQ andR as defined by (6) and
(7) and those of HamiltoniansH1 = QR andH2 = RQ.

Prescription Conditions

Properties of Q† = Q f ∗(r) = f (r) C∗(r) = C(r)
Q andR R† = R g∗(r) = g(r) D∗(r) = D(r)

R† = Q f ∗(r) = g(r) C∗(r) = D(r)
R = Q f (r) = g(r) C(r) = D(r)
Time reversal invariancef ∗(r) = −f (r) g∗(r) = −g(r)

Properties of noσ · p term C(r) = −D(r)
H1 andH2 noσ · r term f (r)D(r) + g(r)C(r)− ir−1D′(r) = 0 C′(r) = D′(r)

noσ · p andσ · r term eitherg(r) = f (r) and C(r) = −D(r) = const. 6= 0
or C(r) = D(r) = 0

nor · p term g(r) = −f (r)
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where the coordinate representation of the orbital states can be written as the product of a
spherical harmonics and a radial wavefunction:

〈r|nlM〉 = Rnl(r)YlM(θ, φ). (12)

In what follows we assume that the radial wavefunctions of the bound states are normalized
in the following way:∫ ∞

0
Rn′l(r)Rnl(r) dr = δn′n. (13)

Straightforward tensor algebraic calculations reveal (see e.g. [14]) that the matrix elements
ofQ = σ · (p + f (r)r) andR = σ · (p− f (r)r) in the basis defined in (11–13) are given by

〈n′(l + 1, 1
2)jm|σ · (p± f (r)r)|n(l 1

2)jm〉

=
∫ ∞

0
Rn′l+1(r)

[
−i

(
d

dr
− l + 1

r

)
± rf (r)

]
Rnl(r) dr (14)

〈n′(l − 1, 1
2)jm|σ · (p± f (r)r)|n(l 1

2)jm〉

=
∫ ∞

0
Rn′l−1(r)

[
−i

(
d

dr
+
l

r

)
± rf (r)

]
Rnl(r) dr. (15)

SinceQ andR are pseudoscalar operators, the matrix elements are diagonal in the quantum
numbersj andm, but the parity of the bra and ket states must be different. This difference is
also demonstrated by the change of the orbital angular momentuml by one unit. In the general
case no selection rules can be given for the principal quantum numbersn andn′.

Since the formalism of the factorization method applies to any construction satisfying (3),
irrespective of the realization of the operators,H1 andH2 defined by (2) have to be essentially
isospectral, in the sense specified in section 1. This statement equally applies to analytically
solvable problems and those admitting only numerical solutions. In the next section we present
examples for which bound state solutions (or at least, part of them) can be given analytically.

3. Examples

3.1. The harmonic oscillator case

Substitutingf (r) = iω/2 in (9) and (10) one gets

H1 = p2 − ωσ · L− 3

2
ω +

ω2

4
r2 (16)

H2 = p2 + ωσ · L +
3

2
ω +

ω2

4
r2. (17)

These equations describe oscillators, which also experience spin–orbit interaction, the strength
of which is correlated with the oscillator constant. Acting with Hamiltonians (16) and (17)
on wavefunctions of the type (12) withj = l + 1

2 andj = l − 1
2, we get radial Schrödinger

equations of harmonic oscillator type, from which the energy eigenvalues can immediately be
determined:

E
(1+)
nl = 2ωn E

(1−)
nl = ω(2n + 2l + 1) (18)

E
(2+)
nl = ω(2n + 2l + 3) E

(2−)
nl = 2ω(n + 1). (19)

Here the superscripts ‘+’ and ‘−’ stand for states withj = l + 1
2 andj = l − 1

2, respectively,
while 1 and 2 specify states belonging toH1 andH2. Note that both the orbital angular
momentuml and the radial quantum numbern can take any non-negative integer value.
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The same results can be obtained by calculating the matrix elements ofH1 andH2 through
those ofR andQ using (14) and (15):

〈n′(l + 1, 1
2)jm|Q|n(l, 1

2)jm〉 = iδn′,n[ω(2n + 2l + 3)]
1
2 (20)

〈n′(l − 1, 1
2)jm|Q|n(l, 1

2)jm〉 = −iδn′,n+1[2ω(n + 1)]
1
2 (21)

〈n′(l + 1, 1
2)jm|R|n(l, 1

2)jm〉 = iδn′,n−1(2ωn)
1
2 (22)

〈n′(l − 1, 1
2)jm|R|n(l, 1

2)jm〉 = −iδn′,n[ω(2n + 2l + 1)]
1
2 . (23)

These equations also display the selection rules applicable to the radial quantum numbern in
the harmonic oscillator case, furthermore, they confirm thatQ = R†. It is also clear thatQ
acts as the inverse ofR (and vice versa), up to a phase factor±i. Note that the right-hand side
of (22) is zero ifR acts on the state|n = 0(l, 1

2)jm〉 if j = l + 1
2, irrespective ofl. Since

this is the lowest possible energy eigenvalue ofH1 (see (18)), we can conclude that the ground
state of this problem is infinitely degenerate and also that the corresponding energy levels are
missing from the spectrum ofH2.

The eigenstates ofH1 andH2 belong to two different groups. The first group contains
the states withE(1+)

n,l = E
(2−)
n−1,l+1 = 2ωn (n = 1, 2, . . .) and the ground state ofH1

with E(1+)
n=0,l = 0. These states are infinitely degenerate, because there is a state with this

energy for anyl. The states belonging to the second group are located at other energies:
E
(1−)
n,l = E(2+)

n,l−1 = ω(2n + 2l + 1). These levels have finite degeneracy, because degeneracy
requiresn + l = const., which can be obtained only in a finite number of ways. It is easy to
see that the degree of degeneracy isk(k + 1) for the states withn + l = k. The structure of the
two spectra is displayed in figure 1.

Similar results have been obtained by Quesne [15], who studied the Dirac oscillator [16].
In fact, the squared Dirac equation, in this case results in equations like (16) and (17). The
degeneracy of the energy eigenvalues originates in both approaches from the correlated strength
of the oscillator parameter and the spin–orbit coupling constant. Balantekin has also analyzed
this problem in terms of SUSYQM [17] and interpreted its ‘accidental’ degeneracies as arising
from anSU(2)×Osp(2/2) symmetry group.

We also note that the selection rules concerning the orbital quantum numbersn and l
shown in (20–23) can also be interpreted in a straightforward way noting thatp± i ω2r are the
usual ladder operators of the harmonic oscillator problem. In particular, they connect states
with N ′ = N ± 1, whereN = 2n + l. It is clear then, thatN ′ = N + 1, for example, can be
obtained from the combinationsn′ = n, l′ = l + 1 andn′ = n + 1, l′ = l − 1.

3.2. The Coulomb case

Thef = icr−1 choice results in Hamiltonians in which the spin–orbit interaction appears in a
Coulomb-like term, rather than in a constant one:

H1 = p2 + c2 − 2
c

r
(σ · L + 1) (24)

H2 = p2 + c2 + 2
c

r
(σ · L + 1). (25)

Evidently, bound states can only appear when the coefficient of ther−1 type term is negative.
Without the loss of generality we can assume thatc > 0 holds: ac → −c transformation
merely interchanges the role ofH1 andH2. Then the sign of the Coulomb term is determined
by 〈σ ·L+ 1〉, which isl + 1 for j = l + 1

2 and−l for j = l− 1
2. The resulting spectra are then

E
(1+)
nl = c2

(
1− (l + 1)2

(n + l + 1)2

)
E(1−) : no bound states (26)
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Figure 1. The energy spectrum of the oscillator problems discussed in section 3.1. The first few
energy levels ofH1 andH2 (denoted with quantum numbers(n, l, j) are depicted on the left-
and the right-hand sides of the figure, respectively. The usual harmonic oscillator states (denoted
with (n, l)) are also displayed, in order to elucidate the origin of the states obtained by spin–orbit
coupling. The infinitely degenerate levels ofH1 andH2 are on the two sides of the figure, while
those with finite degeneracy are in the middle section.

E(2+) : no bound states E
(2−)
nl = c2

(
1− l2

(n + l + 1)2

)
(27)

where the meaning of the superscripts is the same as in (18) and (19).
The matrix elements ofR andQ are〈

n′
(
l − 1,

1

2

)
jm|Q|n

(
l,

1

2

)
jm

〉
= −iδn′,n+1c

[(n + 1)(n + 2l + 1)]
1
2

n + l + 1
(28)〈

n′
(
l + 1,

1

2

)
jm|R|n

(
l,

1

2

)
jm

〉
= iδn′,n−1c

[n(n + 2l + 2)]
1
2

n + l + 1
. (29)

The energy eigenvalues ofH1 = QR andH2 = RQ also readily follow from these matrix
elements.

Similarly to the conventional Coulomb problem, the energy levels tend to a well defined
value in then→∞ limit. This value is not zero, rather it isc2, due to the different choice of the
energy scale.E = 0 now corresponds to the ground state ofH1 for the states withj = l+ 1

2, as
can be seen from (26) withn = 0. This applies to any value of the orbital angular momentum
l, so we again have an infinitely degenerate ground state forH1. The corresponding energy
levels are missing from the spectrum ofH2 again, as can be seen from (27).

The first few energy levels ofH1 andH2 are plotted in figure 2. The energy levels again
exhibit a complex degeneracy pattern:E(1+)

nl is the same whenever the ratio(l + 1)/(n + l + 1)
has the same value, which can be realized in an infinite variety of ways. (A special case of
this is the degeneracy of the ground state withn = 0.) Similarly,E(2−)nl has the same value if
l/(n + l + 1) is fixed.
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Figure 2. The bound-state energy spectrum of the Coulomb-like problems discussed in section 3.2.
The eigenstates ofH1 with j = l + 1

2 are displayed in the left-hand side of the figure, while those
of H2 with j = l − 1

2 on the right-hand side. States with the same value ofj appear in the same
column in both cases. Only states withE/c2 6 8

9 andj 6 7
2 are shown.

3.3. Some quasi-exactly solvable problems

Besides the harmonic oscillator and Coulomb problems, quasi-exactly solvable (QES)
potentials (for a review see [18]) offer further examples for which the solutions can be obtained
(at least partly) for any value ofl in principle. This is an essential requirement for the application
of the formalism outlined in section 2, because theQ andR operators change the value of
the orbital angular momentum with one unit. (See (14) and (15).) The quasi-exactly solvable
models have infinite number of energy levels in general, but exact solutions can be obtained
only for a finite set of them. Furthermore, this is possible only if the potential parameters
satisfy certain conditions.

The most well known QES potential is the sextic oscillator, for which the radial
Schr̈odinger equation is

−d2ψ

dr2
+

(
l(l + 1)

r2
+Ar2 +Br4 +Cr6

)
ψ = Eψ. (30)

The condition of quasi-exact solvability is

C = a2 B = 2ab A = b2 − 2a(2m + l + 5
2). (31)

Herea > 0 andm is a non-negative integer. The solutionsψ can then be written as

ψ(r) ' rl+1 exp

(
−a

2

4
r4 − b

2
r2

)
8m(r

2) (32)
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where8m(r
2) is anmth order polynomial ofr2 [19].

Hamiltonians of the type appearing in (30) can be obtained from (9) and (10) by substituting
f = i ω2 + iβr2 in them:

H
(+)
1 = −

d2

dr2
+
l(l + 1)

r2
+

(
ω2

4
− β(2l + 5)

)
r2 + βωr4 + β2r6− ω

(
l +

3

2

)
(33)

H
(−)
1 = − d2

dr2
+
l(l + 1)

r2
+

(
ω2

4
+ β(2l − 3)

)
r2 + βωr4 + β2r6 + ω

(
l − 1

2

)
(34)

H
(+)
2 = −

d2

dr2
+
l(l + 1)

r2
+

(
ω2

4
+ β(2l + 5)

)
r2 + βωr4 + β2r6 + ω

(
l +

3

2

)
(35)

H
(−)
2 = − d2

dr2
+
l(l + 1)

r2
+

(
ω2

4
− β(2l − 3)

)
r2 + βωr4 + β2r6− ω

(
l − 1

2

)
. (36)

The substitutionβ = b, ω = 2a brings these equations into a form similar to (30), with the
exception of an energy shift. However, we find that the condition for quasi-exact solvability
(as in (31)) is fulfilled only by (33), and only form = 0. Thus, these solutions have the
form of (32) withm = 0, i.e. the polynomial8(r2) is reduced to a constant. This means
that these nodeless functions are the ground state solutions ofH

(+)
1 , and we also find that the

corresponding energy eigenvalues are zero. Furthermore, these observations apply for states
with any l, therefore the situation is very similar to that described in sections 3.1 and 3.2:
H1 has infinitely degenerate ground state withE = 0 for j = l + 1

2, and this energy level is

missing from the spectrum of the partner HamiltonianH
(−)
2 , i.e.H2 in thej = l− 1

2 case. The
remaining solutions cannot be described in terms of this approach. This applies also to the
solutions ofH(−)

1 andH(+)
2 . (Note that the role ofH1 andH2 is interchanged if theβ = −b,

ω = −2a choice is made, which simply replacesf (r) with −f (r). Also note thatβ = 0
reduces the problem to that discussed in section 3.1.)

The HamiltonianH(+)
1 in (33) is similar to the second interpretation of the Hamiltonian

described in [19]: the linear dependence onl there is attributed to spin–orbit coupling term.
Then one component (withj = l + 1

2) of the multi-channel problem can be described in the
QES framework. It is remarkable that this QES problem has been derived in two completely
different ways. The author of [19] proposed the incorporation of the spin–orbit term in the
sextic oscillator problem to account for the linearl dependence of ther2 term, while in our
approach the spin–orbit term appeared by construction in the sextic oscillator problem, when
an appropriate choice off (r) was made in (9).

Similar considerations can be made for other QES problems as well. Thef = is + itr−1

choice leads to Hamiltonians containing a (shifted) oscillator potential andσ · L dependent
Coulomb-like and constant terms. (Thet = 0 and thes = 0 choices, of course, reduce this
problem to those discussed in sections 3.1 and 3.2, respectively.) Here, again we find that
only the zero-energy, infinitely degenerate ground state ofH1 can be obtained exactly in this
framework, and only forj = l+ 1

2. It is remarkable that a situation rather similar to this has been
found by analysing a QES problem, the sextic oscillator in relativistic quantum mechanical
framework, as a departure from the Dirac oscillator [20]: the positive-energy spectrum had an
infinitely degenerate level atE = m for j = l + 1

2.

4. Concluding remarks

We presented a generalization of the factorization method of non-relativistic Hamiltonians in
terms of matrix valued linear differential operators. This method naturally introduces spin
degrees of freedom in the Hamiltonians, which exhibit the same kind of relations as in the
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conventional factorization method: each bound state ofH1 has equivalents in the spectrum of
H2, except for the zero-energy ground state. A characteristic feature of this approach is that a
spin–orbit term is automatically introduced in the Hamiltonians. We note here that the spin–
orbit interaction also appears naturally in Hamiltonians constructed using symmetry-based
algebraic techniques [21].

The shift operators connecting the states ofH1 andH2 are pseudoscalar operators, therefore
they leave the full angular momentumj invariant, but change the parity of the state and modify
the orbital angular momentuml with one unit. This change ofl is a characteristic feature of
the conventional factorization method and SUSYQM too: the partner potentials of radial
problems there have centrifugal terms formally containingl andl + 1. However, it has been
noted [22] that this change can only be formal, because the value ofl is fixed when the radial
Schr̈odinger equation is written down, therefore the centrifugal term should remain unchanged
during the whole procedure and the additionall-dependent singular terms are to be interpreted
dynamically [23]. In contrast with this scenario, in our procedure the complete Schrödinger
equation is factorized, including the full kinetic energy term, therefore the change ofl is not
formal.

Besides all this, the similarity with the conventional factorization and SUSYQM
techniques is striking: the linear differential operators remaining in (14) and (15) after the
integration of the angular variables are practically the same as theA andA† operators of
SUSYQM. (The imaginary factors i and−i could be eliminated by a trivial redefinition ofQ
andR.) In fact, it can be shown that the radial Schrödinger equation obtained fromH1 in (9) with
j = l+ 1

2 andj = l− 1
2 can be obtained by formally substitutingW(r) = −irf (r)− (l+1)r−1

andW(r) = −irf (r)+lr−1 in the ‘bosonic’ HamiltonianH− = A†A = − d2

dr2 +W 2(r)−W ′(r)
of SUSYQM. Similar connection can be established betweenH2 in (10) and the ‘fermionic’
Hamiltonian, the SUSYQM partner ofH−.

The whole procedure outlined in section 2 could, of course, be repeated in a SUSYQM
formalism. In the simplest caseQ andR could be incorporated in the two supercharges as off-
diagonal elements of 2× 2 matrices andH1 andH2 would become the bosonic and fermionic
component of the supersymmetric Hamiltonian. The specific case considered in detail in
sections 2 and 3 (withC = D = 0 andg = −f ) would then become the one discussed by
Beckerset al [24], who studied the conditions under which three-dimensional supersymmetric
Schr̈odinger equations with central potentials lead to supersymmetric one-dimensional radial
equations. Similar constructions have also been considered in [25] in connection with the
discussion of SUSYQM in two and three dimensions.

The potential problems considered in the present framework need not be exactly solvable.
All conclusions concerning isospectrality of the partner Hamiltonians hold for problems that
can only be solved numerically. However, for the sake of simplicity we chose exactly solvable
cases as illustrative examples: the harmonic oscillator, the Coulomb and some quasi-exactly
solvable problems. This is because the resulting Schrödinger-like equations can be solved for
any value ofl in these cases, which is important to demonstrate the merits of our approach.
(Most of the exactly solvable potentials are, in fact, solvable only forl = 0.) Although a
complete solution could only be obtained for the oscillator and the Coulomb cases, there seem
to be certain common characteristic features of all these problems. Perhaps the most important
one is that the physical systems have an infinitely degenerate zero-energy ground state, which
appears forj = l + 1

2 in one of the partner Hamiltonians. In the terminology of SUSYQM this
could heuristically be stated as having an infinite Witten index [26].

The fact that the spin–orbit term is related to the other potential terms throughf (r) allows
interesting combinations in the Hamiltonians. One can use this freedom to generate a pair of
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Hamiltonians in which one, sayH1 has only kinetic and spin–orbit terms. Such Hamiltonians
may have relevance in discussing pseudospin symmetry of nuclei, for example [27]. The
particularf that reducesH1 toH1 = p2+2if σ ·L isf (r) = iar−2(r+a)−1, witha > 0 to avoid
singularities.H2 then has a spin–orbit term with opposite sign and also some extra potential
terms. Based on the construction, the two Hamiltonians should then be isospectral, except for
the ground state. However, simple analytical calculations show that the potentials appearing
in all four radial Schr̈odinger equations are repulsive, so no bound states are possible. The
analogous situation can occur in SUSYQM too: choosing a particular form of the superpotential
W(r)may result in a potential with a known solution, at least atE = 0, but it is not guaranteed
that the solutions of this potential and its SUSYQM partner are normalizable and bound physical
states appear in the spectra. In fact, this is what happens if we defineW(r) in terms off (r)
as we have discussed earlier in this section.

The formalism developed here is applicable to non-central problems as well. The vectors
a andb in (6) can be defined in more general ways as in (7). One possibility (described in the
appendix) is adding a(r×B)-type to them, in which case the Hamiltonians are supplemented
with terms describing interactions in the presence of an external magnetic field collinear with
vectorB.

Appendix

Here we consider a special generalization of the factorized Hamiltonians by including a further
vector term ina andb of (7):

a(r) = f (r)r + r ×A b(r) = g(r)r + r ×B. (37)

We assume thatA andB are axial vectors, so that the vectorial product has polar vector
character. As a further simplification we also suppose that the two new vectors are constant in
space and have parallel direction:A = An,B = BnwithA andB constants. The conditions
securing the specific relations betweenQ andR listed in table 1, i.e.Q† = Q, R† = R,
R† = Q andR = Q then have to be supplemented withA∗ = A, B∗ = B, A∗ = B and
A = B, respectively. WithA = B = real all these relations are satisfied simultaneously.

With the restrictions described here, the following new terms have to be added toH1 in
(8):

H̃1 = −2B · (L + σ) + r2B2 − (r ·B)2 + i(f − g)(σ · r)(r ·B)
+i(g − f )r2σ ·B + (C +D)σ · (r ×B). (38)

With the exception of the last term, (38) contributes to the scalar part ofH1 displayed in (8).
(The corresponding expressions forH2 are obtained by interchangingf (r)with g(r) andC(r)
with D(r).) The first term here can be interpreted as a magnetic dipole-type interaction with
a notable spin giromagnetic factor of two. If the vector fieldB is allowed to be dependent on
r, some extra derivative terms also appear inH̃1.

Here we mention two specific cases. The first one is the choice made in section 2 to get
rid of ther · p and the pseudoscalar terms:C(r) = D(r) = 0, g(r) = −f (r). Then, after
some algebra

H̃1 = −2B · (L + σ) + (r × (B − if σ))2 + 2f 2r2 (39)

follows. As another possibilityC(r) = D(r) = 0 andg(r) = f (r) can be chosen, in which
case the pseudoscalar terms vanish, together with the spin–orbit term in (8), while ther · p
term survives:

H̃1 = −2B · (L + σ) + r2B2 − (r ·B)2. (40)
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Note thatR andQ become identical in this case, just asH1 = R2 andH2 = Q2, so the
isospectrality of the two Hamiltonians becomes trivial.

Although the new terms break the spherical symmetry of the problem, the basis defined
in (11) and (12) can still be used to determine the matrix elements ofR, Q, H1 andH2 by
relatively straightforward tensor algebraic calculations.
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[3] Fernandez C D J1997Int. J. Mod. Phys.A 12171
Fernandez C D J,Glasser M L and Nieto L M 1998Phys. Lett.A 24015
Andrianov A A, Cannata F, Ioffe M V and Nishnianidze D N 1997J. Phys. A: Math. Gen.305037

[4] Bohm A, Ne’eman Y and Barut A O ed1988Dynamical Groups and Spectrum-Generating Algebras(Singapore:
World Scientific)

[5] Lahiri A, Roy P K and Bagchi B 1990Int. J. Mod. Phys.A 5 1383
Lévai G 1994Quantum Inversion Theory and Applications (Lecture Notes in Physics vol 427)ed H V vonGeramb

(Berlin: Springer) p 107
Cooper F, Khare A and Sukhatme U 1995Phys. Rep.251267
Junker G 1996Supersymmetric Methods in Quantum and Statistical Physics(Berlin: Springer)

[6] Nieto M M 1984Phys. Lett.B 145208
Andrianov A A, Borisov N B and Ioffe M V 1984Phys. Lett.A 10519
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[13] Baye D, Ĺevai G and Sparenberg J-M 1996Nucl. Phys.A 599435
[14] Edmonds A R 1960Angular Momentum in Quantum Mechanics(Princeton, NJ: Princeton University Press)
[15] Quesne C 1991Int. J. Mod. Phys.A 6 1567
[16] Cook P A 1971Lett. Nuovo Cimento1 419

Moshinsky M and Szczepaniak A 1989J. Phys. A: Math. Gen.22L817
[17] Balantekin A B 1985Ann. Phys., NY164277
[18] Ushveridze A G 1994Quasi-Exactly Solvable Problems in Quantum Mechanics(Bristol: IOP)
[19] Ushveridze A G 1998Preprinthep-th/9810045
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[21] Lévay P 1995J. Phys. A: Math. Gen.285919
[22] Baye D 1987J. Phys. A: Math. Gen.205529
[23] Amado R D, Cannata F and Dedonder J-P 1990Int. J. Mod. Phys.A 5 3401
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